Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity.
نویسندگان
چکیده
Glioblastoma multiforme (GBM) tumors are the most common type of brain tumors and resistance to radiotherapy. This study aimed to investigate the differential effect and mechanism of tumor microenvironments, cycling hypoxia and non-interrupted hypoxia, on tumor cell radiosensitivity in the human U87 glioblastoma tumor model. We exposed U87 cells and mice bearing U87 glioma to experimentally imposed cycling or non-interrupted hypoxic stress in vitro and in vivo prior to treatment with ionizing irradiation. Clonogenic survival assay and tumor growth measurements were performed to determine tumor radiosensitivity. The differential regulation of non-interrupted vs. cycling hypoxia by hypoxia-inducible factor-1 (HIF-1) and the impact of HIF-1α on hypoxia-induced radioresistance were assessed by molecular assay and RNAi-knockdown technology. Our results demonstrated that cycling hypoxia induced higher and longer term HIF-1 signal transduction activity via reactive oxygen species (ROS) in U87 cells compared with non-interrupted hypoxia. Cycling hypoxia-induced HIF-1α activation reflected ROS mediated HIF-1α synthesis and stabilization, whereas non-interrupted hypoxia-induced HIF-1α activation was due to decreased HIF-1α degradation resulting from decreased prolyl hydroxylation. With regard to tumor radiosensitivity, cycling hypoxia induced more tumor cell radioresistance and a decreased response to radiotherapy in U87 cells compared with non-interrupted hypoxia. HIF-1 knockdown during in vitro and in vivo hypoxic stresses combined with radiotherapy suppressed cycling and non-interrupted hypoxia-induced radioresistance while increasing overall tumor radiosensitivity. Our results suggest that cycling hypoxia induces more radioresistance than non-interrupted hypoxia in U87 gliomas, and ROS mediated HIF-1α activation is a crucial mechanism involved in hypoxia-induced differential radioresistant in U87 gliomas.
منابع مشابه
NADPH Oxidase Subunit 4-Mediated Reactive Oxygen Species Contribute to Cycling Hypoxia-Promoted Tumor Progression in Glioblastoma Multiforme
BACKGROUND Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear. METHODOLOGY Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production...
متن کاملBrusatol-Mediated Inhibition of c-Myc Increases HIF-1α Degradation and Causes Cell Death in Colorectal Cancer under Hypoxia
HIF-1 (hypoxia-inducible factor-1) regulates the expression of ~100 genes involved in angiogenesis, metastasis, tumor growth, chemoresistance and radioresistance, underscoring the growing interest in targeting HIF-1 for cancer control. In the present study, we investigated the molecular mechanisms underlying brusatol-induced HIF-1α degradation and cell death in colorectal cancer under hypoxia (...
متن کاملMolecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice.
Tumor hypoxia is a spatially and temporally heterogeneous phenomenon, which results from several tumor and host tissue-specific processes. To study the dynamics and spatial heterogeneity of hypoxia-inducible factor-1 (HIF-1)-specific transcriptional activity in tumors, we used repetitive noninvasive positron emission tomography (PET) imaging of hypoxia-induced HIF-1 transcriptional activity in ...
متن کاملOligomer procyanidins (F2) repress HIF-1α expression in human U87 glioma cells by inhibiting the EGFR/ AKT/mTOR and MAPK/ERK1/2 signaling pathways in vitro and in vivo
Hypoxia-inducible factor-1 (HIF-1) is over-expressed in gliomas and has become one of the most compelling tumor targets. In this study, we found that oligomer procyanidins (F2) can suppress the expressions of HIF-1α and its target genes in U87 cells, and also down-regulate the EGFR/PI3K/AKT/mTOR and MAPK/ERK1/2 pathways in vitro and in vivo. Furthermore, hypoxia-induced formation of tubular str...
متن کاملDocetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia
HIF-1 (hypoxia-inducible factor-1) regulates the expression of more than 70 genes involved in angiogenesis, tumor growth, metastasis, chemoresistance, and radioresistance. Thus, there is growing interest in using HIF-1 inhibitors as anticancer drugs. Docetaxel, a Food and Drug Administration-approved anticancer drug, is reported to enhance HIF-1α degradation. Here, we investigated the molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oncology reports
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2010